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Abstract. We describe a new approach to heavy-quark fragmentation which is based on a resummed
perturbative calculation and parametrization of power corrections, concentrating on the z −→ 1 limit,
where the heavy meson carries a large fraction of the momentum of the initial quark. It is shown that the
leading power corrections in this region are controlled by the scale m(1 − z). Renormalon analysis is then
used to extend the perturbative treatment of soft and collinear radiation to the non-perturbative regime.
Theoretical predictions are confronted with data on B-meson production in e+e− annihilation.

PACS. 13.66.Bc Hadron production in e−e+ interactions – 12.38.Cy Summation of perturbation theory
– 12.39.St Factorization

1 Introduction

The heavy-quark fragmentation function D(z, m2, µ2) is
the probability distribution to produce a heavy meson of
a heavy quark. It depends on z, the momentum fraction
of the meson, on the quark mass m2 and on the factoriza-
tion scale µ2. The fragmentation function has a formal
definition [2] as the Fourier transform

D(z; µ2) ≡ 1
2π z

∫ ∞

−∞

d(py)
py

exp(ipy/z) F (py; µ2), (1)

of the hadronic matrix element of a non-local operator on
the light-cone (y2 = 0):

F (py; µ2) ≡ (2)
1

4 Nc

∑
X

Tr
{〈0|y/Ψ(y)|H(p) + X〉〈H(p) + X|Ψ(0)|0〉µ2

}
.

Here the final state is composed of the measured heavy
meson (H) carrying momentum p plus anything else (X).

We concentrate here on inclusive observables, the
prime example being the single B-meson inclusive cross
section in e+e− annihilation, shown in Fig. 1. Cross sec-
tions of this sort can be written as a convolution

dσ(x, Q2)
dx

=
∫ 1

x

dz

z
C(x/z, Q2; µ2) D(z; µ2) (3)

between a process-specific coefficient function C, descri-
bing the hard interaction where the heavy quark is produ-
ced, and the process-independent fragmentation function
D, defined in (1), describing the hadronization stage.

� Invited talk (E.G.) at the HEP2003 Europhysics Confe-
rence in Aachen, Germany. These proceedings are based on [1].

Fig. 1. ALEPH data for the energy distribution of produced B
mesons at LEP1 compared to the next-to-leading order (NLO)
calculation (full line)

The common practice is to bridge the gap between ex-
perimental data and fixed-order calculations in QCD by
means of a fragmentation model, i.e. a given functional
form for D(z; µ2) in (3) with one or more free parameters.
For heavy-quark fragmentation the most famous examples
are [3]. Upon excluding the more difficult z −→ 1 region
such fits can indeed be performed. However, the gain is
limited: the relation between the parameters in these mo-
dels and the matrix elements cannot be made precise. The
models provides no information about the underlying ha-
dronization dynamics. Moreover, the universality of the
extracted parameters is unclear. At large z fragmentation
models simply fail to bridge the gap between the resum-
med perturbative calculation and the data. This has been
recently demonstrated in a clear way [4] by directly ex-
tracting the “non perturbative fragmentation component”
from e+e− data in moment space and then comparing the
resulting distribution in z space to models.
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An important application of the heavy-quark fragmen-
tation function which demonstrates these problems is in
the description of B production in hadron colliders. The
CDF collaboration found [5] an alarming discrepancy (a
factor of 3) between the transverse-momentum distribu-
tion of B+ hadroproduction data and the standard tre-
atment of this cross section, where a NLO calculation is
convoluted with a Peterson model [3] for the fragmenta-
tion function. In the latter the free parameter was set to a
standard value based on e+e− annihilation data. Ref. [6]
applied a resummed perturbative calculation for the coef-
ficient function and combined it with the relevant frag-
mentation effect extracted from e+e− data in moment
space, concluding that the discrepancy is much smaller.
This shows that the separation between the perturbative
and non-perturbative ingredients of (3) is very delicate.
A näive application of (3) simply fails: if the perturbative
ingredient C in (3) is taken at fixed order in αs, the re-
quired “non-perturbative” ingredient D appears not to be
the same in different processes.

As heavy-quark production in hadron colliders beco-
mes increasingly important experimentally, it is evermore
urgent to correctly apply perturbative QCD to such cross
sections, to separate in a systematic way between the per-
turbative and the non-perturbative ingredients, and fi-
nally, to understand hadronization in a quantitative way.
In particular, the parametrization of the fragmentation
function D must eventually be understood in terms of its
field theoretic definition (1).

Our approach to heavy-quark fragmentation is prima-
rily a perturbative one: we start off with a perturbative
calculation of the matrix element in (2), replacing the ou-
tgoing meson by an on-shell heavy quark, and treat non-
perturbative effects, which make for the difference bet-
ween the quark and the meson, as corrections. Hadroniza-
tion corrections are power-suppressed: they are inversely
proportional to the mass of the heavy quark m. The per-
turbative approach is appropriate so long as m � Λ. Thus
it is definitely applicable to bottom, and probably, with
some care, also to charm.

It should be kept in mind that a perturbative calcula-
tion is at all possible owing to two properties: (1) the pre-
sence of the quark mass regulating collinear divergences;
and (2) the inclusive nature of the observable, which gu-
arantees the cancellation of infrared singularities between
real and virtual diagrams at any order in perturbation
theory. This cancellation does leave, however, a signifi-
cant trace in the expansion: Sudakov logarithms of 1 − z.
This is why the O(αs) result shown in Fig. 1 diverges at
z −→ 1, whereas the physical cross section vanishes at this
limit. It is only upon summing the z −→ 1 singular terms
in the perturbative series to all orders (exponentiation)
that the vanishing of the cross section is recovered.

2 Asymptotic scaling

Let us first see what can be deduced on the fragmentation
function from general considerations. If the quark mass m
is infinitely large, hadronization effects are negligible, and

the fragmentation function is just δ(1− z). Taking a large
but finite ratio m/Λ, one would expect the function to
be somewhat smeared towards smaller z. This smearing is
proportional to m/Λ, as expressed by the following scaling
law (see e.g. [7]): D(z) = (m/Λ)f((1 − z)m/Λ).

This property can be formulated more precisely upon
taking moments,

D̃(N, m2) ≡
∫ 1

0
dz zN−1D(z, m2), (4)

and it can be explicitly derived [1] from the field-theoretic
definition (1). One can consider two limits, one where the
mass becomes large and the other where the moment in-
dex N gets large. For large m one can match the matrix
element (2) onto the heavy-quark effective theory, get-
ting [8]:

F (py, m2)
py

exp (ipy) −→ F(py Λ̄/m) + O(Λ̄/m), (5)

namely, at the leading order in the large-m expansion the
dependence on m and on the light-cone separation (py)
is coupled: the matrix element becomes a function of a
single argument py Λ̄/m. Here Λ̄ is the difference between
the heavy-meson mass M and the heavy-quark mass m.
For large N it follows from the definition (2) and from (4)
that

D̃(N, m2) −→ F (py, m2)
py

exp (ipy)
∣∣∣∣
py=−iN

+ O
(

1
N

)
, (6)

namely that to leading order in 1/N the N -th moment
of the fragmentation function can be obtained by analy-
tically continuing the matrix element as a function of the
light-cone separation to the complex plane and evalua-
ting it at py = −iN . From (5) and (6) together it follows
that upon taking the simultaneous limit m −→ ∞ and
N −→ ∞ with a fixed ratio m/N ,

D̃(N, m2) � F(py Λ̄/m)
∣∣
py=−iN

+ O
(

1
N

)
, (7)

so the fragmentation function becomes a function of a
single argument NΛ̄/m.

In Sec. 4 we shall see how the dependence on m and
N through the combination NΛ̄/m follows from the large-
order behaviour of the perturbative expansion in the large-
β0 limit. Having established (7) non-perturbatively, we
know that this is indeed the leading behaviour at large
N and that corrections to this behaviour are suppressed
by a power of 1/N .

We see that the scale which characterizes the frag-
mentation process in the large z region is m(1 − z) or,
in moment space, m/N . This scale has a clear meaning
when considering the bremsstrahlung off a heavy quark.
Let us examine the emission in a frame where the quark
energy E is much larger than its mass. The radiation pat-
tern (to O(αs)) is: dD

dz d sin2 θ
� CF αs

π
1

1−z
sin2 θ

(sin2 θ+m2/E2)2 ,
where only the leading term in the limit z −→ 1 was
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kept and the angle of emission θ is related to the gluon
transverse momentum by sin2 θ = k2

⊥/
(
E2z2(1 − z)2

)
. As

discussed in [9], the radiation vanishes in the exact for-
ward direction, but it peaks close to the forward direction
at θ � m/E (the ‘dead cone’), or in a boost-invariant
formulation at |k⊥| � m(1− z). So m(1− z) is the typical
transverse momentum of radiated gluons. The scaling law
(7) can be understood in physical terms as the observation
that the hadronization effects (D̃(N, m2) at large N and
m) are dominated by interaction with gluons of transverse
momentum Λ̄ = M − m.

3 Factorization

Factorization is based on the fact that dynamical pro-
cesses taking place on well-separated physical scales are
quantum-mechanically incoherent. This allows one to
treat different subprocess independently of one another
and to resum large corrections. Consider, for example, the
case of bottom production in e+e− annihilation, shown in
Fig. 1. Referring to (3) one can näively interpret the gap
between the data and some perturbative calculation as
the “non-perturbative fragmentation function” and then
try to bridge this gap using a model. As stressed above this
interpretation leads to much confusion. Instead, the rea-
sons for having large (perturbative and non-perturbative)
corrections need to be identified and the corrections be
resummed.

The first step is to separate the scales involved. Upon
neglecting higher order corrections which are suppressed
by powers of m2/q2 the moments of the cross section can
be written as [10,11]

σ̃(N, q2, m2) = C̃(N, q2; µ2
F )Ẽ(N, µ2

F , µ2
0F )D̃(N, m2; µ2

0F ).

Choosing µ2
F ∼ q2 and µ2

0F ∼ m2, the coefficient function
C̃ and the fragmentation function D̃ depend only on scales
of order q2 and m2, respectively. The evolution factor Ẽ
can be obtained solving the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equation. This factor then re-
sums corrections depending on αs lnm2/q2 to all orders.
Resummation of this kind was implemented in computing
the full line in Fig. 1. Clearly, this is insufficient.

Next, one observes that the subprocesses C̃ and D̃ may
contain additional large corrections. One generic source of
large corrections (see [12]) are running coupling (renorma-
lon) effects, which induce factorial growth of the coefficient
at high orders owing to the increasing sensitivity to ex-
treme ultraviolet or infrared scales. Infrared renormalons
in particular are non-summable and introduce a power-
suppressed ambiguity in the perturbative definition of any
quantity. Since for observable quantities this ambiguity
must cancel it can serve as a probe of non-perturbative
contributions.

Another source of large corrections develops at large
N : the Sudakov logs [13,11]. As stressed above the frag-
mentation process is dominated at large N by momenta
of order m/N . When m and m/N become far apart the
concept of factorization applies again, and can be used to

resum logs of N into a Sudakov form factor. This resum-
mation takes the form of exponentiation in moment space.
A similar situation occurs in the coefficient function C̃, as
is demonstrated in Fig. 5 in [1]. C̃ is dominated at large
N by the invariant mass q2/N of the unresolved jet which
recoils against the measured heavy meson. The fact that
this jet was also initiated by a heavy quark plays no role
at this level [1]: the relevant scale here is the total invari-
ant mass of the jet. The same jet function dominates deep
inelastic structure functions at large N [14,15].

It should be emphasized that factorization (contrary to
its diagrammatic proofs) is a non-perturbative concept.
One should therefore expect that non-perturbative cor-
rections on a certain scale would factorise together with
the corresponding perturbative sum. In particular, this
must apply to renormalon-related power corrections. In
the case of Sudakov logs factorization leads to exponen-
tiation. Going beyond the logarithmic level, one finds that
power corrections on the corresponding scale exponentiate
as well. This is the conceptual basis for the “shape fun-
ction” approach to hadronization corrections, which has
been developed in the context of event-shape distributi-
ons [16,17,18] (see also [19]). This is also the basis of
the approach of [14,15] to higher twist in deep inelastic
structure functions at large N and of our approach [1] to
heavy-quark fragmentation.

4 Dressed gluon exponentiation

In order to deal with heavy-quark fragmentation at
large N both Sudakov logs and renormalons need to be ta-
ken into account. At large N , the perturbative coefficients
are dominated by Sudakov logs. However, the resumma-
tion of the leading logarithms alone does not provide any
information on power corrections. It is the subleading logs
generated by the running of the coupling which produce
the renormalon ambiguity [18,20,1]. Their resummation is
therefore essential to probe the non-perturbative regime.

From these considerations it follows that the Sudakov
exponent needs to be computed to all orders rather than
to some fixed logarithmic accuracy. Clearly, the full cal-
culation cannot be done. However, relevant all-order in-
formation can be obtained from the large-β0 limit corre-
sponding to a single dressed gluon. Calculating the Suda-
kov exponent in this way is referred to as “Dressed Gluon
Exponentiation” (DGE) [18,20,1].

A process-independent calculation of the fragmenta-
tion function (1) in the large-β0 limit was performed in [1].
In the light-cone axial gauge A · y = 0 where the path-
ordered exponential is 1, there is just one diagram – see
Fig. 3 in [1]. This diagram was computed using an off-
shell gluon splitting function, which was derived identify-
ing the limit where the massive quark propagator prior to
the emission of the gluon is singular1.

1 In this limit the gluon virtuality k2, its transverse momen-
tum k2

⊥ and the quark mass m2 are taken to be small simulta-
neously keeping the ratios between them fixed. This is a gene-
ralization of the quasi-collinear limit discussed in [21,11].
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Fig. 2. Left: the perturbative DGE result compared with
ALEPH data for B production in e+e− annihilation, plotted
as a function of the moment N . Right: the same plotted as a
function of the energy fraction of the measured heavy meson

The result for the logarithmic derivative of the frag-
mentation function, written as a scheme invariant Borel
transform, is:

dD̃(N, m2)
d lnm2 =−CF

β0

∫ ∞

0
du

(
Λ2

m2

)u

e
5
3 u

∫ 1

0
dz

(
zN−1 − 1

)
(

z

(1 − z)2

)u [
z

1 − z
(1 − u) +

1
2
(1 − z) (1 + u)

]
, (8)

where Λ is in the MS scheme. A generalization of this
result beyond the large β0 limit which fully captures the
next-to-leading logarithms (NLL) was constructed in [1].

Equation (8) takes into account the cancellation bet-
ween real (zN−1) and virtual (1) corrections. In the square
brackets we distinguish between z = 1 singular and re-
gular terms. The former lead to logarithmically enhanced
contributions in the perturbative expansion, and therefore
need to be exponentiated. According to (8) the natural
scale for the renormalization of the coupling at fixed z is
(1 − z)2m2/z. Thus, integrating over the Borel variable u
first is not possible for (1 − z)m <∼ Λ. As expected, per-
turbation theory breaks down when the gluon virtuality
or its transverse momentum become comparable to the
QCD scale. This constraint takes a completely different
form when considered in moment space: infrared renor-
malons show up.

We proceed to compute the Sudakov exponent in the
large-β0 limit by isolating the z = 1 singular terms, per-
forming the z-integration and then integrating over m2.
The result is:

ln D̃(N, m2; µ2
F0) =

CF

β0

∫ ∞

0

du

u

(
Λ2

m2

)u

× (9)
[ (

m2

µ2
F0

)u

BA(u) lnN − BDGE

D̃
(u, N)

]
,

where

BDGE

D̃
(u, N) = − e

5
3 u (1 − u) Γ (−2u)

(
N2u − 1

)
. (10)

The m2 integration requires to introduce an ultraviolet
subtraction: a µ2

F0-dependent counter term which cancels

the u = 0 singularity of the fragmentation function. This
term is the well-known cusp anomalous dimension [22,23],
given by BA(u) lnN , where BA(u) = 1 + 5

3u + . . . (we
use the MS factorization scheme). Note that contrary to
BDGE

D̃
(u, N) this subtraction term has just a single lnN to

any order in u and it is also free of infrared renormalon
singularities.

According to (10), renormalons in the Sudakov expo-
nent (9) appear at all integer and half integer u values with
the exception of u = 1. It is clear from (8) that these re-
normalons are exclusively related to the z −→ 1 limit. To
define the perturbative sum corresponding to ln D̃(N, m2)
one needs to integrate over u with some prescription that
avoids the poles. The natural choice is the principal-value
(PV) prescription (it was implemented numerically in [1]).
The ambiguity in choosing a prescription is compensated
by power corrections corresponding to the residues. Intro-
ducing a free parameter for each singularity one ends up
with an additive correction to the perturbative Sudakov
exponent having the form:

ln D̃NP(NΛ/m) = −ε1
NΛ

m
−ε3

(
NΛ

m

)3

−ε4

(
NΛ

m

)4

+· · · .
(11)

Finally, exponentiating the result to compute D̃(N, m2)
the perturbative and non-perturbative contributions ap-
pear as two factors:

D̃(N, m2; µ2
F0) = D̃PT(N, m2; µ2

F0) D̃NP(NΛ/m). (12)

The leading power correction of the form NΛ/m predicted
in [24] is readily obtained from (11) upon expanding the
exponent.

It should be stressed that in both the perturbative (9)
and the non-perturbative (11) contributions to the frag-
mentation function we considered here only the leading
terms at large N . At the perturbative level the result is
improved [1] by matching it with the full NLO coefficient.
At the non-perturbative level, there may be additional
O(Λ/m) terms which we do not parametrize, and con-
sequently the description of the first few moments is of
limited accuracy. In practice, to deal with low moments,
it is useful to modify the parametrization (11) replacing
N −→ N − 1 such that the N = 1 moment is exactly 1,
as it must be by definition.

The perturbative PV-regulated DGE result of (9),
matched to the NLL and the NLO and combined with
the proper coefficient function, is compared as a function
of N with the ALEPH data on the left frame in Fig. 2
(full line). In contrast with the NLL result of Ref. [11]
(dashed line), the DGE one does not have a Landau sin-
gularity [1] and thus it extrapolates smoothly towards the
values of N >∼ m/Λ which are beyond perturbative reach.
Also shown in Fig. 2 (left) is the ambiguity – band shown
by dot-dashed lines – corresponding to the residue of the
first renormalon pole located at u = 1/2. The lower edge of
the band just matches the data, indicating that the power
correction of the form and magnitude (!) expected based
on the renormalon analysis is supported by the data.
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Fig. 3. A DGE-based fit to ALEPH data. The free parameters
are αs (i.e. Λ) and the leading power correction coefficient ε1,
which controls the shift of the perturbative distribution

The different perturbative results are converted to x
space on the right frame in Fig. 2. Here the significant
impact of Sudakov resummation to NLL as well as that of
the additional renormalon resummation achieved by DGE
on the shape of the distribution is evident. Note that the
shape of the DGE curve resembles that of the data but
it is centered at larger x. Indeed, the leading effect of
the non-perturbative function (assuming in (11) that only
ε1 	= 0) is a shift of the entire perturbative distribution,
very much the same as the leading corrections in event-
shape distributions [16,19,18]. Finally, regarding the non-
perturbative parameters εn as free parameters in a fit, the
data can be well described. The result of a fit in moment
space where the only non-perturbative correction is ε1 is
shown in Fig. 3. Upon using more non-perturbative para-
meters the details of the prediction (11) can be confronted
with data. The analysis in [1] shows that subleading non-
perturbative corrections at the exponent are rather small,
and the absence of a correction of the form N2Λ2/m2 can
be consistent with the data.

5 Conclusions

We described here a new approach to the QCD descrip-
tion of heavy-quark fragmentation concentrating on the
z −→ 1 limit. It was first rigorously demonstrated that
the non-perturbative dynamics is dominated by the scale
m(1 − z). This scale corresponds in perturbation theory
to the transverse momentum of gluons radiated from the
heavy quark. Based on a renormalon analysis we extended
the perturbative technique for resumming soft gluon ra-
diation to the non-perturbative regime, identified power-
like effects and separated them from the perturbative frag-
mentation function by means of a PV prescription. The
non-perturbative contribution was then parametrized ba-
sed on the renormalon ambiguity. We found that the sim-
plest possible parametrization of power corrections which
follows from renormalons, namely a shift of the pertur-
bative distribution, is sufficient to describe the data on
B production in e+e− annihilation. This way phenome-
nological models for the non-perturbative fragmentation
function are not needed.

The fragmentation function was treated, based on its
definition (1), in a process independent way. The results

are thus applicable independently of the production pro-
cess, given that the corresponding coefficient function in
the MS scheme is known. Universality of the leading power
corrections at large z can now be tested experimentally.
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